Spectral Dimension and Random Walks on the Two Dimensional Uniform Spanning Tree
نویسندگان
چکیده
منابع مشابه
Spectral dimension and random walks on the two dimensional uniform spanning tree
We study simple random walk on the uniform spanning tree on Z2. We obtain estimates for the transition probabilities of the random walk, the distance of the walk from its starting point after n steps, and exit times of both Euclidean balls and balls in the intrinsic graph metric. In particular, we prove that the spectral dimension of the uniform spanning tree on Z2 is 16/13 almost surely.
متن کاملSubsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree
The first main result of this paper is that the law of the (rescaled) two-dimensional uniform spanning tree is tight in a space whose elements are measured, rooted real trees continuously embedded into Euclidean space. Various properties of the intrinsic metrics, measures and embeddings of the subsequential limits in this space are obtained, with it being proved in particular that the Hausdor↵ ...
متن کاملThe loop - erased random walk and the uniform spanning tree on the four - dimensional discrete torus
Let x and y be points chosen uniformly at random from Z4n, the four-dimensional discrete torus with side length n. We show that the length of the loop-erased random walk from x to y is of order n(logn), resolving a conjecture of Benjamini and Kozma. We also show that the scaling limit of the uniform spanning tree on Z4n is the Brownian continuum random tree of Aldous. Our proofs use the techniq...
متن کاملSpanning Tree Recovery via Random Walks in a Riemannian Manifold
In this paper, we describe the use of Riemannian geometry and graph-spectral methods for purposes of minimum spanning tree recovery. We commence by showing how the sectional curvature can be used to model the edge-weights of the graph as a dynamic system in a manifold governed by a Jacobi field. With this characterisation of the edge-weights at hand, we proceed to recover an approximation for t...
متن کاملRandom Walks and Random Spanning Trees
We explore algorithms for generating random spanning trees. We first study an algorithm that was developed independently by David Alduous [1] and Andrei Broder [2]. The algorithm uses a a simple random walk in which edges that correspond to the first visit to vertices are added to the spanning tree. Analysis was inspired by Andrei Broder’s paper. Additionally, we study an algorithm by David Wil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2011
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-011-1251-8